Tm:YAG

Tm:YAG在0.82μm波長范圍內的3H4–3H6躍遷上運行。它可以用波長范圍為0.78 – 0.8μm的高效二極管激光器泵浦。該過渡具有小的量子缺陷,可實現低散熱。為了獲得良好的能量存儲,激發態壽命可以很長,大約為毫秒。它還具有足夠的增益帶寬,可根據主體材料和工作溫度來支持亞ps長的脈沖。與單晶材料相比,透明陶瓷材料結合了單晶和玻璃的優點。通過固態反應和真空燒結來制造透明陶瓷材料。因此,它們不僅具有與單晶一樣優良的光學和熱性能,而且還具有大尺寸、高濃度的特點。此外,它們還具有其他優勢,例如制造周期短,成本較低和多功能樣品。
材料規格
Tm濃度公差(atm%) | Tm:0.5~5at% |
取向 | [111],<5o |
平行性 | ≤10″ |
垂直性 | ≤5′ |
表面質量 | 10-5?(MIL-O-13830A) |
波前失真 | ≤?0.125λ/25?mm?@632.8nm |
表面平整度 | λ/8@632nm |
通光孔徑 | >95% |
倒角 | ?0.15±0.05mm |
尺寸 | D: 2~10mm,L: 3~150mm |
涂層 | AR: ≤0.25%?@2μm |
物理和化學特性
激光躍遷 | 3F4→3H6 |
激光波長 | 1.87~2.16μm |
折射率的溫度依賴性 | 7.3 10-6/K |
吸收截面 | 7.5×10-21cm2 |
二極管泵浦帶 | 785nm,?680nm |
發射截面@ 2013nm | 2.9×10-20?cm2 |
熒光壽命 | ?11ms |
折射率@ 632nm | 1.83 |
光學和光譜性質
激光躍遷 | 3F4→3H6 |
激光波長 | 1.87~2.16μm |
折射率的溫度依賴性 | 7.3 10-6/K |
吸收截面 | 7.5×10-21cm2 |
二極管泵浦帶 | 785nm,?680nm |
發射截面@ 2013nm | 2.9×10-20?cm2 |
熒光壽命 | ?11ms |
折射率@ 632nm | 1.83 |
參考文獻
[1]? Liu X ,? Huang H ,? Zhu H , et al. A modified model for the LD pumped 2 μm Tm:YAG laser: Thermal behavior and laser performance[J]. Optics Communications, 2014, 332:332-338. |
[2]? C C T W A ,? B F C ,? C Y L J . A simple method to estimate the thermal focal length of LD-end-pumped Tm:YAG crystal at room temperature – ScienceDirect[J]. Optik, 2015, 126( 13):1300-1302. |
[3]? Wang C ,? Niu Y ,? Liu W , et al. A theoretical and experimental investigation for wavelength switchable TmYAG laser modulated by Tm:YAG crystal length[J]. Optics & Laser Technology, 2015, 68:18-22. |
[4]? Bernard J E ,? Whitford B G ,? Madej A A . A Tm:YAG laser for optical frequency measurements: mixing 148 THz light with CO2 laser radiation[J]. Optics Communications, 1997, 140(1-3):45-48. |
[5]? Quehl G , J Grünert,? Elman V , et al. A tunable dual frequency Tm:YAG laser[J]. Optics Communications, 2002, 190(1-6):303-307. |
[6] A, Rameix, and, et al. An efficient, diode-pumped, 2 μm Tm:YAG waveguide laser[J]. Optics Communications, 1997. |
[7]? Ju Y ,? Wu C ,? Qiang W , et al. Diode-end-pumped linear-polarized single-frequency Tm:YAG laser at room temperature[J]. Optics Communications, 2012, 283(1):93-97. |
[8] Sidorowicz, Agata, Nakielska, et al. Effect of Tm2O3 doping on microstructure and optical properties of Tm:YAG ceramics.[J]. Ceramics International, 2015. |
[9] C Bollig and W.A Clarkson and R.A Hayward and D.C Hanna. Efficient high-power Tm:YAG laser at 2 μm, end-pumped by a diode bar[J]. Optics Communications, 1998. |
[10]? Zhang S ,? Wang X ,? Kong W , et al. Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser[J]. Optics Communications, 2013, 286(Complete):288-290. |
[11]? Cheng L ,? Shen D ,? Jie S , et al. Flash-lamp pumped normal-mode and Q-switched Cr–Tm:YAG laser performance at room temperature[J]. Optics Communications, 1999, 164(1-3):63-67. |
[12]? Xu X ,? Feng W ,? Xu W , et al. Growth and spectral properties of Yb,Tm:YAG crystal[J]. Journal of Alloys and Compounds, 2008, 462(1-2):347-350. |
[13]? Jin L ,? Liu P ,? Liu X , et al. High average power of Q-switched Tm:YAG slab laser[J]. Optics Communications, 2016, 372:241-244. |
[14]? Zou Y ,? Wei Z ,? Wang Q , et al. High-efficiency diode-pumped Tm:YAG ceramic laser[J]. Optical Materials, 2013, 35(4):804-806. |
[15]? Wu C ,? Fei C ,? Ju Y , et al. High-power single-longitudinal-mode operation of Tm:YAG laser using Fabry–Perot etalons and volume Bragg grating[J]. Optics Communications, 2012, 285(10-11):2693-2696. |
[16]? Xu W ,? Xu X ,? Wu F , et al. Infrared to Visible Upconversion Fluorescence in Yb,Tm :YAG Single Crystal[J]. Optics Communications, 2007, 272(1):182-185. |
[17]? Wu C ,? Ju Y ,? Qiang W , et al. Injection-seeded Tm:YAG laser at room temperature[J]. Optics Communications, 2011, 284(4):994-998. |
[18]? Ma Q L . Light scattering and 2-μm laser performance of Tm:YAG ceramic[J]. Optics Communications, 2011, 284(6):1645-1647. |
[19] T Chanelière,? Bonarota M ,? Damon V , et al. Light storage protocols in Tm:YAG[J]. Journal of Luminescence, 2009, 130(9):1572-1578. |
[20] Jianguo, Li, Tao, et al. Measurement of output characteristics of Tm:YAG laser at 25–300K[J]. Optics Communications, 2015, 334:118-121. |
[21]? Merkel K D ,? Mohan R K ,? Cole Z , et al. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG[J]. Journal of Luminescence, 2004, 107(1/4):62-74. |
[22]? Louchet A ,? Du Y L ,? Brouri T , et al. Optical investigation of nuclear spin coherence in Tm:YAG[J]. Solid State Sciences, 2008, 10(10):1374-1378. |
[23] Output characteristics of acousto-optical cavity dumped Tm:YAG ceramic laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(6):3175-3178. |
[24]? Sidorowicza A ,? Wajlera A , Helena W?glarza, et al. Precipitation of Tm2O3 nanopowders for application in reactive sintering of Tm:YAG[J]. Ceramics International, 2014, 40(7):10269-10274. |
[25]? Zhang W X ,? Pan Y B ,? Zhou J , et al. Preparation and characterization of transparent Tm:YAG ceramics[J]. Ceramics International, 2011, 37(3):1133-1137. |
[26] R Müller,? Fuhrberg P ,? Teichmann H O , et al. Pulsed and cw Cr,Tm:YAG laser with simultaneous diode and flashlamp excitation[J]. Optics & Laser Technology, 2005, 37(7):570-576. |
[27] Chunting Wu?,? Jiang Y ,? Wang C , et al. Pulse-diode-intermittent-pumped 2-μm acousto-optically Q-switched Tm:YAG laser[J]. Infrared Physics & Technology, 2019, 96:151-154. |
[28]? Ferrier A ,? Ilas S ,? Goldner P , et al. Scandium doped Tm:YAG ceramics and single crystals: Coherent and high resolution spectroscopy[J]. Journal of Luminescence, 2017:S0022231317316599. |
[29]? Fei B J ,? Huang J Q ,? Guo W , et al. Spectroscopic properties and laser performance of Tm:YAG ceramics[J]. Journal of Luminescence, 2013, 142(Complete):189-195. |
[30] Wu, C, T, et al. Thermal effect and laser characteristics of LD end-pumped CW Tm:YAG laser at room temperature[J]. Journal for Light and Electronoptic, 2017. |
與Tm:YAG相關的案例:
暫無與本產品相關的案例,請訪問芯飛睿的案例頁面查看其他案例。
與Tm:YAG相關的解決方案:
與Tm:YAG相關的視頻:
暫無與本產品相關的視頻,請訪問芯飛睿的視頻頁面播放其他視頻。