Cr:YAG

我司的Cr4+:YAG晶體,又稱摻鉻釔鋁石榴石晶體,化學(xué)式為Cr:Y3Al5O12,是一種綜合性比較優(yōu)良的調(diào)Q晶體產(chǎn)品。不僅可以用作Q 開(kāi)關(guān),還可以用作增益介質(zhì),因?yàn)樗哂袃?yōu)異的物理化學(xué)性質(zhì)。在激光測(cè)距儀、LIDAR和LIBS 系統(tǒng)的無(wú)源Q開(kāi)關(guān)激光器領(lǐng)域有廣泛的應(yīng)用。Cr:YAG具有化學(xué)穩(wěn)定、耐用、抗紫外線、導(dǎo)熱性好、損傷閾值高(>500 MW/cm2)、操作簡(jiǎn)單等優(yōu)點(diǎn),正在超越LiF和有機(jī)染料等傳統(tǒng)材料。Cr:YAG是用于無(wú)源Q開(kāi)關(guān)(激光二極管或燈泵浦)Nd:YAG、Nd:YLF、Nd:YVO4的優(yōu)秀且廣泛使用的電光材料和其他 0.8~1.2μm 的 Nd(或Yb)摻雜激光器,也是一種可用作CW、脈沖或自鎖模可調(diào)諧 NIR 固態(tài)激光器的活性介質(zhì),可調(diào)諧范圍為1340 – 1580nm以及工作波長(zhǎng)為950-1100nm的激光器中用于Q開(kāi)關(guān)的介質(zhì)。1060 nm 波段的吸收飽和可用于具有閃光燈或激光二極管泵浦的小型 Nd:YAG 振蕩器,而不是基于染料或LiF:F中心無(wú)源Q開(kāi)關(guān),使Cr4+:YAG晶體可以實(shí)現(xiàn)自鎖模 (KML) 狀態(tài)。它提供了在1450-1580nm處構(gòu)建脈沖持續(xù)時(shí)間短于100fs的激光源的機(jī)會(huì)。
特點(diǎn)
- 高導(dǎo)熱率
- 高損傷閾值(> 500MW/cm2)
- 優(yōu)異的理化特性
- 輻射穩(wěn)定性
物理和化學(xué)特性
屬性 | 數(shù)值 |
化學(xué)式 | Cr4+:Y3Al5O12 |
晶體結(jié)構(gòu) | cubic – la3d |
晶格參數(shù)? | 12.01 |
取向 | [100] or [110] < ±0.5° |
質(zhì)量密度 | 4.56 g/cm3 |
莫氏硬度 | 8.5 |
楊氏模量 | 335 GPa |
抗拉強(qiáng)度 | 2 GPa |
熔點(diǎn) | 1970°C |
導(dǎo)熱系數(shù) | 0.1213 |
比熱/(J·g-1·K-1) | 0.59 |
熱膨脹/(10-6 /°C @ 25°C) | 7.8 <111> |
7.7 <110> | |
8.2 <100> | |
抗熱震參數(shù) | 800 W/m |
消光比 | 25dB |
泊松比 | 0.25 |
折射率@ 1064 nm | 1.83 |
電荷補(bǔ)償離子 | Ca2+, Mg2+ |
光學(xué)性質(zhì)
屬性 | 數(shù)值 |
光密度 | 0.1 to 0.8 |
熒光壽命 | 3.4μs |
濃度 | 0.5 mol % ~ 3 mol % |
發(fā)射波長(zhǎng) | 1350 nm ~ 1600 nm |
吸收系數(shù) | 1.0 cm-1?~ 7 cm-1 |
基態(tài)吸收截面 | 4.3×10-18?cm2 |
發(fā)射態(tài)吸收截面 | 8.2×10-19?cm2 |
傳輸 | 10% to 90% |
涂層 | AR≤ 0.2% @1064nm |
損傷閾值 | > 500 MW / cm2 |
拋光
屬性 | 數(shù)值 |
方向公差 | < 0.5° |
厚度/直徑公差 | ±0.05 mm |
表面平整度 | <λ/8@632 nm |
波前失真 | <λ/4@632 nm |
表面質(zhì)量 | 5-Oct |
平行 | 10〞 |
垂直 | 5ˊ |
通光孔徑 | >90% |
倒角 | <0.1×45° |
HR涂層 | <= 0.2% (@ 1340nm) |
最大尺寸 | 2*2-15*15 mm×20mm |
光譜
![]() | ![]() |
![]() | ![]() |
參考文獻(xiàn)
[1]? Saiki T ,? Nakatsuka M ,? Fujioka K , et al. Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation[J]. Optics Communications, 2011, 284(12):2980-2984. |
---|
[2]? Saiki T ,? Funahashi K ,? Motokoshi S , et al. Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers[J]. Optics Communications, 2009, 282(4):614-616. |
[3]? Wu Y ,? Jiang L ,? Qiu F , et al. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788. |
[4] Jiying, Peng, Yi, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336. |
[5]? Peng J Y ,? Zheng Y ,? Shi Y X , et al. Passively Q-switched a -cut Nd:GdVO 4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44( 7):2175-2177. |
[6] A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics[J]. Journal of the European Ceramic Society, 2015, 35(14):S095522191530025X. |
[7]? Yi X ,? Zhou S ,? Chen C , et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceramics International, 2014, 40(5):7043-7047. |
[8]? Honda Y ,? Motokoshi S ,? Jitsuno T , et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148:342-346. |
[9] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018. |
[10]? Villafana-Rauda E , R Chiu,? Mora-Gonzalez M , et al. Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulation[J]. Results in Physics, 2018, 12. |
[11]? Chen X ,? Lu T ,? Wei N , et al. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic[J]. Optical Materials, 2015, 49:330-336. |
[12]? Cafiso S ,? Ugolotti E ,? Schmidt A , et al. Sub-100-fs mode-locking of the Cr:YAG laser using monolayer graphene saturable absorber[C]// Cleo. IEEE, 2013. |
[13]? Bernard J E ,? Alcock A J ,? Chepurov S V , et al. Measurement of the frequency of acetylene transitions at 1540 nm with a mode-locked Cr:YAG laser[C]// Leos Summer Topical Meetings. IEEE, 2005. |
[14]? Chen J C ,? Lo C Y ,? Huang K Y , et al. Mapping of Cr ions and refraction index profile in Cr:YAG crystal fiber with double-cladding structure[J]. Annals of Physical and Rehabilitation Medicine, 2004. |
[15]? Jaspan M A ,? Welford D ,? Xiao G , et al. Atypical behavior of Cr:YAG passively Q-switched Nd:YVO4 microlasers at high-pumping rates[J]. Filtration Industry Analyst, 2000. |
[16]? Lin J H , MD Wei,? Hsu H H , et al. High peak power output of a diode-pumped Q-switched and mode locked Nd:LuVO4 with Cr:YAG saturable absorber[C]// Conference on Lasers & Electro-optics-pacific Rim. IEEE, 2007. |
[17]? Dong J ,? Shirakawa A ,? Ueda K I , et al. Composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser[C]// Conference on Lasers & Electro-optics. IEEE, 2008. |
[18]? Sorokin E ,? Naumov S ,? Kalashnikov V L , et al. Spectral broadening of 50 fs Cr:YAG pulses around 1.5 /spl mu/m in the tapered fiber.? 2003. |
[19] D Welford,? Jaspan M A . Single-frequency operation of a Cr:YAG laser from 1332 to 1554 nm[J]. Journal of the Optical Society of America B, 2004, 21(12):2137-2141. |
[20]? Saiki T ,? Imasaki K ,? Motokoshi S , et al. Oscillation Property of Disk-Type Nd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]// Conference on Lasers & Electro-optics. American Institute of Physics, 2006. |
[21]? Lo C Y ,? Tu S Y ,? Huang K Y , et al. Fused-silica-clad Cr:YAG fiber. IEEE, 2003. |
[22] Tsunekane, Taira. High temperature operation of passively Q-switched, Cr:YAG/Nd:YAG micro-laser for ignition of engines. IEEE, 2009. |
[23]? Cho W B ,? Schmidt A ,? Sun Y C , et al. Carbon-Nanotube Mode-Locked Cr:YAG Laser[C]// Lasers & Electro-optics. IEEE, 2010. |
如果你對(duì)我們的Cr:YAG感興趣,請(qǐng)聯(lián)系我們獲取價(jià)格或申請(qǐng)樣品。
與Cr:YAG相關(guān)的文章:
與Cr:YAG相關(guān)的案例:
與Cr:YAG相關(guān)的解決方案:
與Cr:YAG相關(guān)的視頻:
暫無(wú)與本產(chǎn)品相關(guān)的視頻,請(qǐng)?jiān)L問(wèn)芯飛睿的視頻頁(yè)面播放其他視頻。