TeO2

TeO2晶體,又稱二氧化碲,是一種具有高品質因數的性能優良的聲光晶體材料。TeO2晶體具有響應速度快,驅動功率小,衍射效率高,性能穩定可靠等優點。廣泛應用于聲光偏轉器、聲光調制器、聲光諧波器、聲光濾波器和可調諧濾波器等各類聲光器件。用氧化碲制作的聲光器件,在相同的通光孔徑下,分辨率可有數量級的提高,因此TeO2晶體是一種擁有廣闊應用前景的聲光器件材料,尤其是聲光調制器和聲光諧波器,在光計算、光通訊和光顯微成像等技術中有廣泛的應用。
特點
- 高折射率
- 聲音衰減小
- 高品質因數
- 出色的聲光特性
- 較大的聲光品質因數
- 對可見光具有高透明度
物理和化學特性
屬性 | 數值 |
化學式 | TeO2 |
摩爾質量 | 159.60 g/mol |
顏色 | 無色 |
密度 | 5.99 ± 0.03 /cm3 |
熔點 | 733°C |
硬度 | 3-4莫氏硬度計 |
熱膨脹 | 10-6?К-1: α11= 17.7; α22?= 17.7; α33= 5.5 |
對稱性 | 四方晶系, 422 (D4) |
晶格參數 | a = 4.8122 ?; c = 7.6157 ? |
透過率 | >70% @ 633nm |
發射范圍 | 0.33 ~ 5.0 μm |
介電常數 | ε11 = 22.9; ε33 = 24.7 |
彈性常數·10-10 N/m2 | c11 = 5.57; c33 = 10.58; c44 = 2.65; c66 = 6.59; c12 = 5.12; c13 = 2.18 |
光彈性系數@0.6328 μm | p11 = 0.0074; p12 = 0.187; p13 = 0.340; p31 = 0.0905; p33 = 0.240; p44 = -0.17; p66 = -0.0463 |
折射率
λ, μm | no | ne | Δn = ne– no |
0.4047 | 2.4315 | 2.6167 | 0.1852 |
0.4358 | 2.3834 | 2.5583 | 0.1749 |
0.4678 | 2.3478 | 2.5164 | 0.1686 |
0.48 | 2.3366 | 2.5036 | 0.167 |
0.5086 | 2.315 | 2.4779 | 0.1629 |
0.5461 | 2.2931 | 2.452 | 0.1589 |
0.5893 | 2.2738 | 2.4295 | 0.1557 |
0.6328 | 2.2597 | 2.4119 | 0.1522 |
0.6438 | 2.2562 | 2.4086 | 0.1524 |
0.69 | 2.245 | 2.3955 | 0.1505 |
0.8 | 2.226 | 2.373 | 0.147 |
1 | 2.208 | 2.352 | 0.144 |
光學活性,沿[001]
λ, μm | p, deg/mm | λ, μm | p, deg/mm |
0.3698 | 587.1 | 0.5893 | 104.9 |
0.3783 | 520.6 | 0.6328 | 86.9 |
0.3917 | 437.4 | 0.7 | 67.4 |
0.4152 | 337.6 | 0.8 | 48.5 |
0.4382 | 271 | 0.9 | 37.4 |
0.463 | 221.1 | 1 | 29.5 |
0.4995 | 171.2 | 1.1 | 23.8 |
0.53 | 143.4 | ? | ? |
聲光特性:λ=0.6328μm
Nsound | Usound | Vsound?103?м/с | Nlight | Elight | M1?10-7сm2?·?с/г | M210-18с3/г |
[100] | [100] | 2.98 | [010] | [100] | 0.097 | 0.048 |
[100] | [100] | – | [010] | [001] | 22.9 | 10.6 |
[001] | [001] | 4.26 | [010] | [100] | 142 | 34.5 |
[001] | [001] | – | [010] | [001] | 113 | 25.6 |
[100] | [010] | 3.04 | [001] | optional | 3.7 | 1.76 |
[110] | [110] | 4.21 | [-110] | [110] | 323 | 0.802 |
[110] | [110] | – | [-110] | [001] | 16.2 | 3.77 |
[101] | [101] | 3.64 | [-101] | [010] | 101 | 33.4 |
[010] | [010] | 2.98 | [-101] | [101] | 42.6 | 20.4 |
[110] | [-110] | 0.617 | [001] | optional | 68.6 | 793 |
[101] | [-101] | 2.08 | [010] | [100] | 76.4 | 77 |
TeO2調制器特性
АОM的主要特點 | TeO2調制器的典型值 |
光學波長范圍 | 514nm, 633nm, 1064nm, 1330nm |
光學孔徑 | 0.3 mm – 3 mm |
工作模式 | 縱向的, 軸(001) |
光上升時間 | 光束直徑為9-200 nsec |
光束分離(633 nm) | 10-30?mrad |
衍射效率 | 70-85 % |
調制頻率(-3db) | 6-50 MHz |
TeO2偏轉器特性
АОD的主要特點 | TeO2偏轉器的典型值 |
光學波長范圍 | 540nm-530nm, 630nm-850nm, 700nm-1100nm, 1064nm, 1330nm |
光學孔徑 | 1 mm?– 10 mm |
工作模式> | 橫波,軸3-15度(110) |
中心頻率 | 20- 200 MHz |
帶寬 | 20-100 MHz |
衍射效率 | 60-95% |
時間光圈 | 1-15?μs |
分辨率(T.BW產品) | 200-2000 |
光上升時間 | 光束直徑為9-200 nsec |
偏角 | 10-100?mrad |
Δ偏轉角 | 5-50?mrad |
射頻輸入功率 | 0,1- 2 Wt |
TeO2可調諧濾波器特性
АОTF的主要特點 | TeO2 AOTF的典型值 |
調諧范圍 | 450-750nm, 900-1200nm, 1200-2500nm, 2500-5000nm |
帶寬 | 0.5 nm – 15 nm |
工作模式 | 慢剪切,非共線傳播 |
角孔 | 2-10度 |
光學孔徑 | 3×3 mm – 30×30 mm |
衍射效率 | 70-85 % |
射頻功率 | 1-10 Wt |
參考文獻
[1]? Mirzaei A ,? Park S ,? Sun G J , et al. CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors[J]. Journal of Hazardous Materials, 2016, 305(Mar.15):130-138. |
[2]? Dafinei I ,? Diemoz M ,? Longo E , et al. Growth of pure and doped TeO2 crystals for scintillating bolometers[J]. Nuclear Inst & Methods in Physics Research A, 2005, 554(1-3):195-200. |
[3]? Kokh A E ,? Shevchenko V S ,? Vlezko V A , et al. Growth of TeO2 single crystals by the low temperature gradient Czochralski method with nonuniform heating[J]. Journal of Crystal Growth, 2013, 384(dec.1):1-4. |
[4] S, Kumaragurubaran, and, et al. Investigations on the growth of Bi2TeO5 and TeO2 crystals[J]. Journal of Crystal Growth, 1999. |
[5]? Beke S ,? Kobayashi T ,? Sugioka K , et al. Time-of-flight mass spectroscopy of femtosecond and nanosecond laser ablated TeO2 crystals[J]. International Journal of Mass Spectrometry, 2011, 299(1):5-8. |
[6]? Casali N ,? Bellini F ,? Dafinei I , et al. Monte Carlo simulation of the Cherenkov radiation emitted by TeO2 crystal when crossed by cosmic muons[J]. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 2013, 732(dec.21):338-341. |
[7] Jalilian, Jaafar, Naseri, et al. Electronic and optical properties of paratellurite TeO2 under pressure: A first-principles calculation[J]. Journal for Light & Electronoptic, 2017. |
[8]? Syrbu N N ,? Cre?U R V . The superposition of one- and two-phonon absorption and radiation in TeO2 crystal[J]. Infrared Physics & Technology, 1996, 37(7):769–775. |
[9]? Mangin J ,? Veber P . PtTe2: Potential new material for the growth of defect-free TeO2 single crystals[J]. Journal of Crystal Growth, 2008, 310(12):3077-3083. |
[10]? Sudha A ,? Maity T K ,? Sharma S L , et al. An extensive study on the structural evolution and gamma radiation stability of TeO 2 thin films[J]. Materials Science in Semiconductor Processing, 2018, 74:347-351. |
[11] A, Watterich, and, et al. Paramagnetic and diamagnetic defects in e? and UV-irradiated TeO2 single crystal[J]. Nuclear Instruments & Methods in Physics Research, 2002. |
[12]? B C A A ,? B C B A ,? D A B C , et al. Production of high purity TeO 2 single crystals for the study of neutrinoless double beta decay[J]. Journal of Crystal Growth, 2010, 312( 20):2999-3008. |
[13] High-stability acousto-optical devices using bulk acoustic waves in TeO2[J]. Electronics Letters, 2007, 14(17):535-536. |
[14]? Barucci M ,? Brofferio C ,? Giuliani A , et al. Measurement of Low Temperature Specific Heat of Crystalline TeO2 for the Optimization of Bolometric Detectors[J]. Journal of Low Temperature Physics, 2001, 123(5-6):303-314. |
[15]? Xun G ,? Shang X , D Zhang. Study on SAW characteristics of amorphous-TeO2/36°Y-X LiTaO3 structures. IEEE, 2009. |
[16]? Stavrakieva D ,? Ivanova Y ,? Pyrov J . On the composition of the crystal phases in the PbO TeO2 system[J]. Journal of Materials Science, 1988, 23(5):1871-1876. |
[17]? Yong J K ,? Choi S W ,? Kang S Y , et al. Enhancement of the benzene-sensing performance of Si nanowires through the incorporation of TeO2 heterointerfaces and Pd-sensitization[J]. Sensors and Actuators B Chemical, 2017, 244(jun.):1085-1097. |
[18] Physical properties and structural studies of lithium borophosphate glasses containing TeO 2[J]. Journal of Solid State Chemistry, 2019, 270:547-552. |
[19]? Nagarajan V ,? Chandiramouli R . DFT investigation of NH3 gas interactions on TeO2 nanostructures[J]. Progress in Natural Science: Materials International, 2016, 26( 2):129-138. |
[20]? Park S ,? An S ,? Ko H , et al. Enhancement of ethanol sensing of TeO2 nanorods by Ag functionalization[J]. Current Applied Physics, 2013, 13(3):576-580. |
光譜
![]() |
與TeO2相關的案例:
與TeO2相關的解決方案:
與TeO2相關的視頻:
暫無與本產品相關的視頻,請訪問芯飛睿的視頻頁面播放其他視頻。